数学オフィスアワー現場で出会う微積分・線型代数ダイジェスト版9

連立1次方程式の解法— 解を分数で表す方法 (あとで実験データ処理に活用)

★ 本書 p.358

準備 0を含む除法

Q1 $\frac{0}{5}$, $\frac{5}{0}$, $\frac{0}{0}$ の値を答えることができるでしょうか?

*
$$\frac{5}{0} = 0$$
, $\frac{0}{0} = 1$, $\frac{0}{0} = 0$ は正しいかどうか?

$$\frac{0}{5}$$
 \longrightarrow :

分数は除号(割算の演算記号)と同じ形です.

分数の値は除法の定義に基づいて求めます.

除法の定義

 $a \div b = \square$

とは

 $\square \times b = a$

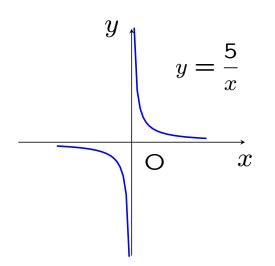
をみたす数を求める演算である.

問題1 除法の定義にしたがって,つぎの分数の値を求めてください.

$$\frac{0}{5}, \frac{5}{0}, \frac{0}{0}$$

- 連立1次方程式の解を分数で表すと,
- ① 解が1組だけ存在する ② 解が存在しない ③ 解が無数に存在する を判別することができます.

注意
$$\frac{5}{0}$$
 (不能) と $\lim_{x\to 0} \frac{5}{x} = \pm \infty$ とのちがい



 $y=rac{5}{x}$ 曲線 $y=rac{5}{x}$ は y軸と交わらないので, x=0 とならない.

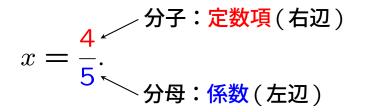
$$\frac{5}{0} = \infty$$
は正しくない.

基本 1次方程式

★ 本書 p.359

$$5x = 4$$

の解の特徴を観察してください.



発展 2元連立1次方程式

How はじめに「解の表し方」を練習します.

解法に必要な行列式(マトリックスではない)の定義から始めます.

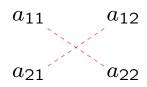
★ あとで「なぜこの方法で解けるのか」を理解します.

2次の行列式

★ 本書 p.360

$$a_{11} \quad a_{12} \\ a_{21} \quad a_{22}$$

記号 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ 定義 $a_{11}a_{22}-a_{12}a_{21}$. 斜めに掛けて引く



例 $a_{11}=a$, $a_{12}=b$, $a_{21}=c$, $a_{22}=d$ のとき

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc.$$

注意 は絶対値の記号ではありません.

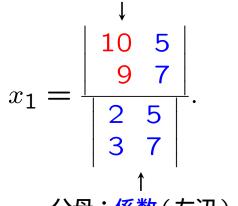
クラメール Cramer**の方法**

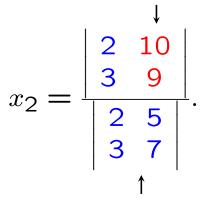
例1
$$\begin{cases} 2x_1 + 5x_2 = 10\\ 3x_1 + 7x_2 = 9 \end{cases}$$

解の表し方

★ 本書 p.361

分子: x_1 の係数の上に定数項(右辺) 分子: x_2 の係数の上に定数項(右辺)





分母:係数(左辺)

問題2 行列式を計算して,未知数の値を求めてください. \mathbf{R} 分母は x_1 と x_2 とのどちらでも同じです.

分母
$$\begin{vmatrix} 2 & 5 \\ 3 & 7 \end{vmatrix} = 2 \times 7 - 5 \times 3$$

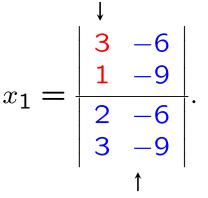
 $= -1.$
 x_1 の分子 $\begin{vmatrix} 10 & 5 \\ 9 & 7 \end{vmatrix} = 10 \times 7 - 5 \times 9$
 $= 25.$
 x_2 の分子 $\begin{vmatrix} 2 & 10 \\ 3 & 9 \end{vmatrix} = 2 \times 9 - 10 \times 3$
 $= -12.$
 $x_1 = \frac{25}{-1}.$
 $x_2 = \frac{-12}{-1}.$
 $\begin{cases} x_1 = -25 \\ x_2 = 12 \end{cases}$

例2
$$\begin{cases} 2x_1 - 6x_2 = 3\\ 3x_1 - 9x_2 = 1 \end{cases}$$

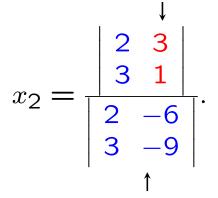
解の表し方

★ 本書 p.361

分子: x_1 の係数の上に定数項(右辺) 分子: x_2 の係数の上に定数項(右辺)



分母:係数(左辺)



分母:係数(左辺)

問題3 行列式を計算して,未知数の値を求めてください. \mathbf{R} 分母は x_1 と x_2 とのどちらでも同じです.

分母
$$\begin{vmatrix} 2 & -6 \\ 3 & -9 \end{vmatrix} = 2 \times (-9) - (-6) \times 3$$

= 0.

$$x_1$$
 の分子 $\begin{vmatrix} 3 & -6 \\ 1 & -9 \end{vmatrix} = 3 \times (-9) - (-6) \times 1$
= -21.

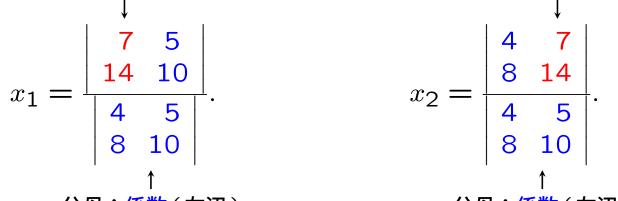
$$x_2$$
の分子 $\begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = 2 \times 1 - 3 \times 3$
$$= -7.$$
$$x_1 = \frac{-21}{0}.$$
$$x_2 = \frac{-7}{0}.$$

例3
$$\begin{cases} 4x_1 + 5x_2 = 7 \\ 8x_1 + 10x_2 = 14 \end{cases}$$

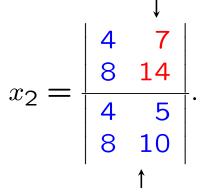
解の表し方

★ 本書 p.361

分子: x_1 の係数の上に定数項(右辺) 分子: x_2 の係数の上に定数項(右辺)



分母:係数(左辺)



分母:係数(左辺)

問題4 行列式を計算して,未知数の値を求めてください. $|\mathbf{m}|$ 分母は x_1 と x_2 とのどちらでも同じです.

分母
$$\begin{vmatrix} 4 & 5 \\ 8 & 10 \end{vmatrix} = 4 \times 10 - 5 \times 8$$

 $= 0.$
 x_1 の分子 $\begin{vmatrix} 7 & 5 \\ 14 & 10 \end{vmatrix} = 7 \times 10 - 5 \times 14$
 $= 0.$
 x_2 の分子 $\begin{vmatrix} 4 & 7 \\ 8 & 14 \end{vmatrix} = 4 \times 14 - 7 \times 8$
 $= 0.$
 $x_1 = \frac{0}{0}.$
 $x_2 = \frac{0}{0}.$

解は無数に存在します.

Q2 解は具体的にどのような値でしょうか?

第2式

$$8x_1 + 10x_2 = 14$$

の両辺に $\frac{1}{2}$ を掛けるとわかるように,第1式

$$4x_1 + 5x_2 = 7$$

と一致します. 実質的な方程式は第1式だけしかないから

★ 本書 p.364

$$x_1 = t$$
 (tは任意の実数)

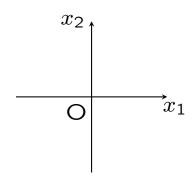
とおくと

$$x_2 = \frac{7 - 4t}{5}$$

となります.

例
$$t=0$$
を選ぶと $x_1=0$, $x_2=\frac{7}{5}$. $t=1$ を選ぶと $x_1=1$, $x_2=\frac{3}{5}$.

 $4x_1 + 5x_2 = 7$ のグラフを描いてください.



よこ軸: x_1 , たて軸: x_2 .

 $\star x_2 = \cdots$ に書き換え<mark>ない</mark>で,この方程式のままグラフを描きます.

*x*₁ を含む項を右辺に移項するとき

$$x_2 = -\frac{4}{5}x_1 + \frac{7}{5}$$

の符号をまちがうおそれがあります.

● 係数が分数になるので,整数よりも扱いにくくなります.

もとの方程式は無傷のまま直線を描く.

解

直線上のすべての点が方程式 $4x_1 + 5x_2 = 7$ をみたします.

$$4x_1 + 5x_2 = 7$$

の「 $4x_1$ 」を手で隠す(「 $x_1 = 0$ のときを考える」という意味)と

$$5x_2 = 7$$

から暗算で直ちに

$$x_2 = \frac{7}{5}$$

とわかります.

$$4x_1 + 5x_2 = 7$$

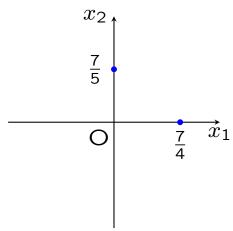
の「 $5x_2$ 」を手で隠す(「 $x_2 = 0$ のときを考える」という意味)と

$$4x_1 = 7$$

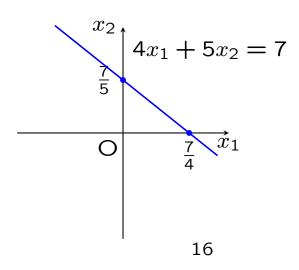
から暗算で直ちに

$$x_1 = \frac{7}{4}$$

とわかります.



2点を通る直線を引く.



Why Cramerの方法で解が求まる理由

★ 本書 p.363

例1
$$\begin{cases} 2x_1 + 5x_2 = 10 & \text{①} \\ 3x_1 + 7x_2 = 9 & \text{②} \end{cases}$$

 x_2 を消去するために、① \times 7-② \times 5をつくります.

$$7 \times 2x_1 + 7 \times 5x_2 = 10 \times 7$$

$$5 \times 3x_1 + 5 \times 7x_2 = 5 \times 9$$

$$(2 \times 7 - 5 \times 3)x_1 = 10 \times 7 - 5 \times 9$$

$$x_1 = \frac{10 \times 7 - 5 \times 9}{2 \times 7 - 5 \times 3} \xrightarrow{- 20} \begin{array}{c} 10 & 5 \\ 9 & 7 \\ \hline 2 & 5 \\ 3 & 7 \end{array}$$

自習 x_2 も確かめてください.

発展 3元連立1次方程式



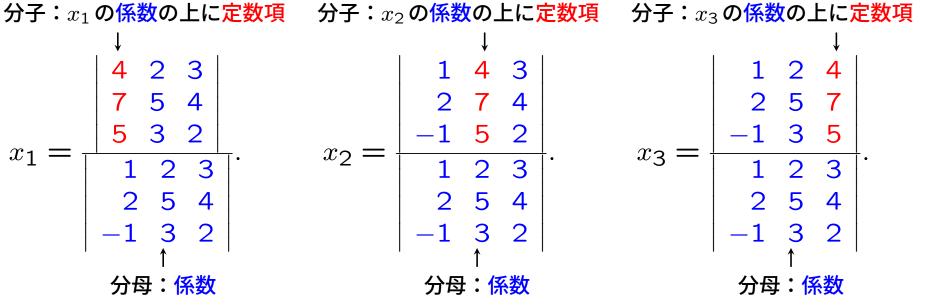
クラメール Cramer**の方法**

$$\begin{cases} 1x_1 + 2x_2 + 3x_3 = 4 \\ 2x_1 + 5x_2 + 4x_3 = 7 \\ -1x_1 + 3x_2 + 2x_3 = 5 \end{cases}$$

解の表し方

★ 本書 p.367

分母:係数



問題 $oxedsymbol{6}$ 分母, x_1 の分子, x_2 の分子, x_3 の分子の行列式を計算して,解を求めてください.

解 分母
$$+1 \begin{vmatrix} 5 & 4 \\ 3 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 5 \\ -1 & 3 \end{vmatrix}$$
 $= 1 \times (-2) - 2 \times 8 + 3 \times 11$
 $= 15.$
 x_1 の分子 $+4 \begin{vmatrix} 5 & 4 \\ 3 & 2 \end{vmatrix} - 2 \begin{vmatrix} 7 & 4 \\ 5 & 2 \end{vmatrix} + 3 \begin{vmatrix} 7 & 5 \\ 5 & 3 \end{vmatrix}$
 $= 4 \times (-2) - 2 \times (-6) + 3 \times (-4)$
 $= -8.$
 x_2 の分子 $+1 \begin{vmatrix} 7 & 4 \\ 5 & 2 \end{vmatrix} - 4 \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 7 \\ -1 & 5 \end{vmatrix}$
 $= 1 \times (-6) - 4 \times 8 + 3 \times 17$
 $= 13.$
 x_3 の分子 $+1 \begin{vmatrix} 5 & 7 \\ 3 & 5 \end{vmatrix} - 2 \begin{vmatrix} 2 & 7 \\ -1 & 5 \end{vmatrix} + 4 \begin{vmatrix} 2 & 5 \\ -1 & 3 \end{vmatrix}$
 $= 1 \times 4 - 2 \times 17 + 4 \times 11$
 $= 14.$

解

$$\begin{cases} x_1 = -\frac{8}{15} \\ x_2 = \frac{13}{15} \\ x_3 = \frac{14}{15} \end{cases}$$

自習 計算練習 本書 pp.362 – 369

次回のための予習 行列式の性質 本書 pp.371 – 377