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1 Groups of problems unsolved
in elementary geometry

Formerly, I had been posting problems of “quadran-
gle with integer angles” (generalized Langley’s prob-
lem) as the column “Challenge from Geometry the
Great” (幾何大王からの挑戦状), and in the final post
I introduced one of that kind of problem which had
not ever been proved by elementary geometry. But fi-
nally, a proof for that problem no doubt by elementary
geometry was found on October 27th, 2015. More-
over, the method used in that proof can be applied
to every generalized Langley’s problem including two
groups of problems which were considered not having
any known proof by elementary geometry until then,
and the mission “Find proof by elementary geometry
for every generalized Langley’s problem”, which J. F.
Rigby left as a homework in 1978, was completed. The
epoch-making proof was presented on the internet by
Ms. aerile_re (pen name). In this article, I will intro-
duce her method in detail with her consent.

The following is the problem which she solved on
Oct. 27th.

[Q1]
ABCD is a quadrangle such that ∠ABD = 38◦,
∠DBC = 46◦, ∠BCA = 22◦ and ∠ACD = 48◦.
Prove ∠BDA = 18◦ by elementary geometry.

A “problem of quadrangle with integer angles” is for-
mulated as follows: In the quadrangle on the left side
of Fig.1, angles a, b, c, d are given, and you should find

angle e or prove e equals to such value. A quadrangle
such that every angle formed by edges and diagonals
has integer value in degree (or rational number value
in the broad sense) is called a “quadrangle with integer
angles”. Also, a triangle with a point placed inside of
it and connected to each vertexes (like the right side of
Fig.1) such that every angle formed by each lines has
integer (or rational number) value (sometimes called
a “triangle with integer angles”) is regarded as that
equivalent. In this article, let us call a “problem of
quadrangle with integer angles”, a “generalized Lang-
ley’s problem”.

Fig.1

As introduced in the former article, British mathe-
matician J. F. Rigby made systematic research for the
proof of the existence of each “quadrangle with inte-
ger angles” (in his word “adventitious quadrangle”),
which is equivalent to the solution of each generalized
Langley’s problem, in elementary geometry in 1970’s.
As a result of the research, almost all problems turned
out to be covered by several methods, and only small
part of the problems was left unreachable by the sys-
tematic path of proof. Let me skip the detail of the
systematic proof, one of the problems in the remaining
group was Q1.

All non-series adventitious quadrangles, excepting
those belong to 1 or 2 parameter series, are divided
in 65 small groups, and 8 of them remained unproven
by elementary geometry. Gathering equivalent groups
from algebraic point of view, these 8 small groups can
be categorized into 2 larger groups. If one of the prob-
lems in each group is proved by elementary geometry,
you can construct a proof for any other problem in
the group. It means that we need to prove one more
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problem in the group other than the group which Q1
belongs to, to complete proofs for all generalized Lan-
gley’s problem. So I asked Ms. aerile_re to prove fol-
lowing Q2, and finally, it was verified no generalized
Langley’s problem is unprovable in elementary geom-
etry on October 30th, 2015.

[Q2]
ABCD is a quadrangle such that ∠ABD = 18◦,
∠DBC = 144◦

7
, ∠BCA = 24◦ and ∠ACD = 450◦

7
.

Prove ∠BDA = 90◦

7
by elementary geometry.

Now, it should be noted that the story that these
groups of problems were not proved until then is based
on my own recognition. If anyone knows the fact
that some proof by elementary geometry for these un-
solved problems left by Rigby was presented before
Oct. 27th, please let me know.

2 Proofs using "3 circumcenter
method"

Both of the proofs for Q1 and Q2 by Ms. aerile_re
are based on “3 circumcenter method” which she in-
vented. First of all, please read these proofs.
(Some expressions in the proofs are changed and com-
plemented. Please refer
http://note.chiebukuro.yahoo.co.jp/detail/n365238 to
see the original.)

Proof for Q1
Let P, Q be the circumcenters of △ABC and

△DBC . Let R be the circumcenter of △QPC .
Moreover, let S be the point such that △ASP ≡

△CRP and both B and S are on the same side of line
AP , let T be the point such that △QTD ≡ △CRQ
and both C and T are on the same side of line QD.
Then, AS = SP = PR = RQ = QT = TD.

As a result, △TQR = 60◦ (From here, detailed
calculation of angles will be described later), hence
△TQR is equilateral.

Let SPUVW be a regular pentagon such that A and
it are on the same side of line SP , then ∠UPR = 60◦

and △UPR is equilateral.

Let DTX be an equilateral triangle such that Q and
it are on the opposite side of line DT , and let URTY
be a rhombus. Since △UYT ≡ △ASW and △YTX ≡
△SWV , it follows that △UYX ≡ △ASV .

Since DX // V U , VUXD is a parallelogram.
Let S′ be the point such that △UYX ≡ △DS ′V ,

then △ASV ≡ △DS ′V and SADS ′ is an isosceles
trapezoid.

Fig.2

Considering the sum of the interior angles of the
heptagon ASPRQTD, ∠SAD + ∠TDA = 136◦.

Since ∠XDS ′ = ∠VUY = 32◦, ∠SAD + ∠S ′DA =
164◦. Hence ∠SAD = 82◦.

It leads to the result that ∠ADB = 18◦.

[Calculation of angles]
∠ABC = 84◦, ∠CAB = 74◦. Therefore
∠APC = 168◦, ∠PCA = ∠CAP = 6◦,
∠CPB = 148◦, ∠PBC = ∠BCP = 16◦.
∠DBC = 46◦, ∠CDB = 64◦. Therefore
∠DQC = 92◦, ∠QCD = ∠CDQ = 44◦,
∠CQB = 128◦, ∠QBC = ∠BCQ = 26◦.
Considering PB = PC and QB = QC,
∠CQP = 64◦, ∠QPC = 106◦. Therefore
∠CRP = 128◦, ∠RPC = ∠PCR = 26◦,
∠CRQ = 148◦, ∠RQC = ∠QCR = 16◦, ∠PRQ = 20◦.
∠ASP = ∠CRP = 128◦,
∠SPR = ∠APC = 168◦,
∠TQR = ∠DQC − 2∠RQC = 60◦,
∠QTD = ∠CRQ = 148◦,
∠UPR = ∠SPR − 108◦ = 60◦,
∠ASW = ∠ASP − 108◦ = 20◦,
∠UYT = ∠URT = ∠PRQ = 20◦,
∠RTY = ∠YUR = 160◦,
∠YTX = ∠QTD + 120◦ − ∠RTY = 108◦.
Let lines DX and TR intersect at point Z, then
∠XZR = ∠XTR − 60◦ = 32◦,
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∠VUY = 360◦ − 108◦ − 60◦ − ∠YUR = 32◦.
Since TR // Y U , DX // V U .
According to the main part of the proof, ∠SAD = 82◦.
Hence, ∠DAC = ∠SAD − 26◦ − 6◦ = 50◦,
∠BDA = ∠DBC + ∠BCA − ∠DAC = 18◦.

Proof for Q2
Let P, Q be the circumcenters of △ABC and

△DBC . Let R be the circumcenter of △BPQ.
Moreover, let S be the point such that △ASP ≡

△PRB and both B and S are on the same side of line
AP , let T be the point such that △QTD ≡ △BRQ
and both C and T are on the same side of line QD.
Then, AS = SP = PR = RQ = QT = TD.

Let PR3RR4R2 be a regular pentagon such that
points Q and R3 are on the same side of line PR,
then PRR2R3R4 is a regular star pentagon. Since
∠TQR = ∠QRR2 = 900◦

7
, we can make the regular

heptagon TQRR2WV U .
Here, let l be line R4U . According to the sym-

metry of the regular pentagon and the regular hep-
tagon, T, Q, R, R3 are symmetric to V, W, R2, P , re-
spectively, through l. Further, let A′, D′, S′ be the
points symmetric to A, D, S, respectively, through l.

Moreover, let XR4R3 and Y R4P be equilateral tri-
angles such that P and X are on the opposite side of
line R4R3 and R3 and Y are on the opposite side of
line R4P , then X and Y are symmetric through l.

Fig.3

Since AS // XR4，A′S′ // Y R4, we can make polyg-
onal line AK1K2K3A′ which shares start and end
points with polygonal line ASPY R4XR3S′A′ such
that AK1 // PY , K1K2 // SP , K2K3 // R3S′ and
K3A′ // XR3. Furthermore, it matches polygonal line
DTUVD′ by parallel translation (Detail will be de-

scribed later), hence AD // A′D′. Moreover AD and
A′D′ are symmetric through l, hence AD // l. It leads

to the conclusion that ∠BDA = 90◦

7
.

[Calculation of angles]

∠BCA = 24◦, ∠CAB = 822◦

7
. Therefore

∠BPA = 48◦, ∠PAB = ∠ABP = 66◦,
∠BPC = 876◦

7
, ∠PCB = ∠CBP = 192◦

7
.

∠BCD = 618◦

7
, ∠CDB = 498◦

7
. Therefore

∠BQD = 1236◦

7
, ∠QDB = ∠DBQ = 12◦

7
,

∠CQB = 996◦

7
, ∠QBC = ∠BCQ = 132◦

7
.

Considering PB = PC and QB = QC,
∠PQB = 498◦

7
, ∠BPQ = 438◦

7
. Therefore

∠PRB = 996◦

7
, ∠RBP = ∠BPR = 132◦

7
,

∠BRQ = 876◦

7
, ∠RQB = ∠QBR = 192◦

7
,

∠QRP = 648◦

7
.

∠ASP = ∠PRB = 996◦

7
,

∠RPS = ∠BPA − 2∠BPR = 72◦

7
,

∠TQR = 360◦ − ∠BQD − 2∠RQB = 900◦

7
,

∠QTD = ∠BRQ = 876◦

7
.

∠QRR2 = ∠QRP + 36◦ = 900◦

7
,

∠R4PS = ∠RPS + 36◦ = 324◦

7
.

Let lines SP and l intersect at point Z1,
then ∠R4Z1S = ∠R4PS + 18◦ = 450◦

7
,

∠R4UT = 450◦

7
= ∠R4Z1S, hence TU // SP .

Since ∠YPS = ∠R4PS + 60◦ = 744◦

7
and

∠DTU = 360◦ − ∠QTD − 900◦

7
= 744◦

7
,

DT // PY . Similarly, V U // S′R3, D′V // R3X.
Let lines AS and l intersect at point Z2, then
∠AZ2U = ∠ASP − ∠R4Z1S = 78◦,
∠XR4U = 60◦ + 18◦ = 78◦ = ∠AZ2U , hence
AS // XR4. Similarly, A′S′ // Y R4．
According to the main part of the proof, AD // l.

Hence, ∠TDA = ∠DTU − ∠R4UT = 294◦

7
,
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∠BDA = ∠TDA − ∠TDQ − ∠QDB = 90◦

7
.

[Operating polygonal lines]
Let XR4Y K2, ASPK4 and R3S′A′K5 be rhom-

buses, then K4P // AS // XR4 // K2Y , K5R3 // A′S′ //
Y R4 // K2X, hence, quadrilaterals K4K2Y P and
XK2K5R3 are also rhombuses.

Moreover, let AK1K2K4 and K2K3A′K5 be rhom-
buses, then AK1 // K4K2 // PY // DT , K1K2 // AK4 //
SP //TU . Similarly K2K3//R3S′//UV , K3A′//XR3//
V D′.

Fig.4

Actually, it is clear that K2 lies on l, so the fact that
AD // l can be shown without using points A′, D′, S′,
K3 and K5.

3 Make polygonal line using 3
circumcenters

The main idea of Ms. aerile_re’s “3 circumcenter
method” is condensed into first few lines of each of the
two proofs.

A generalized Langley’s problem can be considered
as a problem about two triangles ABC and DBC
which share the base and every interior angles of those
are known, to find the direction of AD seen from the
base (to be accurate, the angle of rotation from

−−→
BC to

−−→
AD). In case that D lies inside △ABC , it’s a problem
of “triangle with integer angles”. Let us take Q as the
circumcenter of △ABC , and P as the circumcenter of
△DBC . Then both P and Q lie on the perpendicular
bisector of segment BC, and every interior angles of
△BPQ and △CPQ are known. And furthermore, tak-
ing R as a circumcenter of △CPQ and taking S and
T such that △ASP ≡ △CRP and △QTD ≡ △CRQ,
enable us to connect A and D by a polygonal line

ASPRQTD such that every line segment composing
the polygonal line has the same length and known an-
gle relative to BC. As a result, we can replace the
problem itself with a problem to find the relative di-
rection from the start point to the end point of the
polygonal line.

Fig.5

Here, you can make △ASP and △QTD on eiher
side of lines AP and QD. Moreover, you can take
R as a circumcenter of △BPQ instead of △CPQ. In
that case, you should make triangles congruent with
△BRP and △BRQ instead of those congruent with
△CRP and △CRQ. These replacement only cause
some change of the appearing order of segments, but
the relative angles of each segments do not change.

This problem to find the direction from the start
point to the end point of a polygonal line composed of
segments of the same length, can be considered as a
problem to find the argument of sum of 6 nth root of
unity. And the existence of the segments which corre-
spond to each complex numbers lets the geometrical
consideration on the Gaussian plane be translated di-
rectly into the proof in elementary geometry.

4 Equivalent transformation of
the polygonal line in elemen-
tary geometry

Setting the algebraic calculation in the background
aside, let me show the specific methods to construct
a proof for the problem to find the direction from the
start point to the end point of a polygonal line com-
posed of equal segments. The basic concept is to trans-
form the polygonal line into the figure which we can
easily find the direction from the start point to the
end point of it, only using some operations which do
not change the start point and the end point. These
operations are following three; ‘rearrangement’, ‘re-
placement’ and ‘cancellation’.

‘Rearrangement’ corresponds to the change of cal-
culating order in the case that the polygonal line is
considered as the sum of vectors. Using parallelograms
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(in this case of equal segments, rhombuses) is an easy
way to implement it in elementary geometry. Using
rhombus ABCD, polygonal line ABC can be replaced
with polygonal line ADC . Repeating such operations,
we can make a polygonal line composed of the same set
of segments (segments with same direction and same
length are considered identical here) in any order.

‘Replacement’ means replacing a part of the polyg-
onal line with another polygonal line, and a regular
polygon is used for this operation. If a part of the
polygonal line can be regarded as a part of a regular
polygon, it can be replaced with the rest path of the
regular polygon. The method used in ‘rearrangement’
can also be considered as ‘replacement’ using a rhom-
bus.

‘Cancellation’ is to delete a pair of segments with
opposite directions from the polygonal line. The path
can be shortened by rearranging segments so that the
pair adjoin each other, or by making parallel displace-
ment of the path between the pair.

Fig.6

The goal of the transformation of the polygonal line
ASPRQTD using these method is the figure where the
direction of segment AD is known. For that purpose,
the polygonal line should be transformed into a part
of a line-symmetric figure. In regard to this, different
ideas are used in the proofs for Q1 and Q2. In the proof
of Q1, points A and D are symmetric with respect
to the axis of symmetry. On the other hand in the
proof of Q2, line AD itself is the axis of symmetry
of the figure, in principle. (In the above-mentioned
proof of Q2, the line-symmetric figure is drawn at the
other place than AD to reduce the procedure of re-
arrangement.)

The process of the proofs for Q1 and Q2 focusing
on the transformation of the polygonal line is shown
in Fig.7 and 8.

Fig.7

Fig.8

Regarding Q1, SP is replaced with SWVUP using
regular pentagon at first, and further replacement us-
ing three equilateral triangles produces polygonal line
ASWVURTXD. After the cancellation of VU and XD
and some rearrangement, finally appeared polygonal
line ASWV W ′S′D is line-symmetric with respect to
the bisector of ∠WVW ′, and AD is perpendicular to
the axis of symmetry.

Regarding Q2, polygonal line ASPRQTD is re-
arranged into ASEFGHD at first. After drawing
regular heptagon FGHDIJK , regular star pentagon
EFKLM , equilateral triangles SEM and MLN , and
rhombus NMSA, it can be confirmed that point A lies
on line MD which is the axis of symmetry for all drawn
figures.

It should be noticed that these two methods can
be applied to any generalized Langley’s problem using
algebraic calculation described next.
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5 Geometry on the Gaussian
plane

In order to construct the proofs for Q1 and Q2, Ms.
aerile_re executed following calculations using nth
root of unity, and translated the result into the rela-
tionship within plane figures. (Here, some expressions
are also changed from the original.)

[Background calculations for Q1 (Method 1)]
The angles of each directed segments in polygonal

line ASPRQTD relative to BC are −54◦, −2◦, 10◦,
170◦, 50◦ and 82◦ in order, and the goal of the proof
is to show the relative angle of AD equals to 28◦. Let
z = e

2πi
360 , then showing that

f(z) = z−54 + z−2 + z10 + z170 + z50 + z82

is a multiplication of z28 by real number is enough for
the purpose.

The minimum polynomial of z is the 360th cyclo-
tomic polynomial F360(x) whose degree is ϕ(360) = 96.
Therefore, we can transform f(z) such that the degree
of each term of it is within the range from 28 − 48 to
28 + 47, uniquely. Let the transformed polynomial be
g(z), then z20g(z) should be the remainder obtained
by dividing

z20f(z) = z326 + z18 + z30 + z190 + z70 + z102 by
F360(z) = z96 + z84 − z60 − z48 − z36 + z12 + 1.

Using the fact, it can be calculated that
g(z) = z28(−z42 − z38 + z22 + z18 + z6

+ z−6 + z−18 + z−22 − z−38 − z−42),
and this symmetric form means that f(z) = g(z) is a
multiplication of z28 by real number. Using the equal-
ities

−z42 + z−18 = z−78, z18 − z−42 = z78,
−z38 + z−22 = z−82, z22 − z−38 = z82,

we can make further transformation into a polynomial
with less terms like

g0(z) = z28(z82 + z78 + z6 + z−6 + z−78 + z−82).
Now, transforming the polygonal line representing
f(z) into the polygonal line representing g0(z) forms
the proof by elementary geometry.

The relation between the polynomials,
f(z) − g0(z)
= f(z) + z208(z82 + z78 + z6 + z−6 + z−78 + z−82)
= z10 + z50 + z82 + z126 + z130 + z170

+ z202 + z214 + z286 + z290 + z306 + z358 = 0,
can be described using Fig.9 in which the terms are

plotted on the Gaussian plane, by the fact that the
sum of the complex numbers located on the vertexes of
each regular pentagon or equilateral triangle in Fig.9
is equal to 0. Here, the black dots are the terms of
f(z), the white dots are the terms of −g0(z), and the
gray dots are canceled as pairs and do not appear as
terms. The ‘replacements’ used in the proof for Q1
correspond to the regular pentagons and the equilat-
eral triangles in this figure. (Note that each segment
in these polygonal line corresponds to a dot here.)

Fig.9

[Background calculations for Q2 (Method 2)]

Let t = 6◦

7
. The angles of each directed segments in

polygonal line ASPRQTD relative to BC are −110t,
−66t, 156t, 54t, −6t and 58t, and the goal of the proof
is to show the relative angle of AD equals to 9t. Let
z = e

2πi
420 , then showing the fact that

f(z) = z−110 + z−66 + z156 + z54 + z−6 + z58

is a multiplication of z9 by real number, which is equiv-
alent to the fact that z−9f(z) is a real number, is
enough for the purpose.

The relation
z−9f(z) − z−9f(z)
= z301 + z345 + z147 + z45 + z405 + z49

+ z329 + z285 + z63 + z165 + z225 + z161 = 0
is clearly shown in Fig.10. (The black dots are the
terms of z−9f(z), the white dots are the terms of
−z−9f(z), and the gray dots are canceled as pairs.)
A regular heptagon, a regular pentagon, and 2 equi-
lateral triangles in this figure correspond to those in
Fig.8. The reason why a regular star pentagon is used
in Fig.8 is that z147 which corresponds to PR (EF )
and z315 which corresponds to FK are not next to
each other on the regular pentagon in Fig.10.
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Fig.10

This time, two different methods are used for these
proofs, but actually, the second method is much easier
in calculation and in finding graphical relationships
on the Gaussian plane. Combining “3 circumcenter
method” with the calculation by this second method
can almost mechanically construct the proof of arbi-
trary generalized Langley’s problem by elementary ge-
ometry.

6 The correspondence to the
conventional proof

The calculation by the second method completely
corresponds to the algebraic calculation about three-
diagonal intersections of regular n-gons which is equiv-
alent to quadrangles with integer angles, used in the
conventional proof for the problem like Q1 and Q2
which does not depend on the elementary geometry.

Poonen and Rubinstein treated the existence condi-
tion of three-diagonal intersections of regular n-gons
as follows.

Let the circumference of a circle cut into six arcs
with lengths in integer ratio, and let U , X, V , Y , W ,
and Z denote the ratio of each arc in order when the
entire circumference is 1. According to the trigono-
metric form of Ceva’s theorem, it is equivalent to

sin πU sin πV sin πW = sin πX sin πY sin πZ

that those three chords connecting each division point
as shown in Fig.11 intersect at a single point. More-

over, using the fact that sin θ = eiθ − e−iθ

2i
, the con-

dition can be arranged like follows.
6∑

j=1
eiπαj +

6∑
j=1

e−iπαj = 0, where

α1 = V + W − U − 1/2,
α2 = W + U − V − 1/2,
α3 = U + V − W − 1/2,

α4 = Y + Z − X + 1/2,
α5 = Z + X − Y + 1/2,
α6 = X + Y − Z + 1/2

For the sake of later argument, let the formula be
changed like

6∑
j=1

eiβj −
6∑

j=1
e−iβj = 0,

βj = παj + π/2 (j = 1, · · · , 6).

Fig.11

Let ABCD be a quadrangle with integer angles such
that point A is located inside the circumscribed circle
of △DBC , and let a, b, c, d, and e denote the an-
gles of directed segments BA, CA, BD, CD, and AD
relative to BC. Now, consider point A as a three-
diagonal intersection of an inscribed regular n-gon in
the circumscribed circle of △DBC like the right side
of Fig.11, then

πU = c, πV = −a + b + c − d, πW = c − e,
πX = a − c, πY = −b − c + e + π, πZ = −c + d,

and as a result,
β1 = −a + b + c − d − e,
β2 = a − b + c + d − e,
β3 = −a + b + c − d + e,
β4 = −a − b − c + d + e + 2π,
β5 = a + b − c + d − e,
β6 = a − b − c − d + e + 2π.

On the other hand, when “3 circumcenter method”
is applied to this quadrangle with integer angles, the
angles of each directed segments in generated polygo-
nal line relative to AD are as follows in order.

θ1 = a + b − c + d − e,
θ2 = a + b + c − d − e + π,
θ3 = −a + b + c − d − e,
θ4 = a − b − c + d − e + π,
θ5 = −a + b + c + d − e + π,
θ6 = a − b + c + d − e.

Now, it can be easily checked that the terms appear-
ing in the formula
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6∑
j=1

eiθj −
6∑

j=1
e−iθj =

6∑
j=1

eiθj +
6∑

j=1
ei(π−θj) = 0

which shows that the angle of the segment connecting
the start point and the end point of the polygonal line
relative to AD is equal to 0 using the second calculat-
ing method, completely match those in the formula

6∑
j=1

eiβj −
6∑

j=1
e−iβj =

6∑
j=1

eiβj +
6∑

j=1
ei(π−βj) = 0.

Poonen and Rubinstein successfully made the com-
plete list of three-diagonal intersections of regular
polygons by classifying the combination of the regu-
lar polygons on the Gaussian plane drawn inevitably
by plotting the 12 nth roots of unity with 0-sum ob-
tained from these intersections, and this “3 circum-
center method” is the key to let the clear relationship
on the Gaussian plane which has been unable to be re-
flected in the proof by elementary geometry until now,
appear directly in the figure for the proof.
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