線型代数学周遊 応用をめざして 正誤表

2025.3.05

頁	行	誤	正
p.5	17	取ってきて,	 取ってきて 5 * 3 を,
p.6	1.9	原点の一意性,	逆元の一意性
p.6	15	定数倍の ℚ	定数倍のℝ
p.6	14	有限体全体	有限体
p.7	1.1	ベクトル空間の	ベクトル空間における
p.7	1.14	原点	原点 (零ベクトル)
p.13	1.12	$b \in A$	$v \in V$
p.13	1.16	と定義すると	とすると
p.13	16	線型作用素	線型作用素の集合
p.15	1.1	個体数の変化なく	削除
p.23	1.14		つまり, $\dim_{\mathbb{R}}\mathbb{C}=2$ です.因みに $\dim_{\mathbb{C}}\mathbb{C}=1$
p.25	1.12	別の基底である	基底である
p.27	図 2-3	P_3	p_3
p.28	15	$L \in C_0$	$L \in C_1(D)$
p.30	1.6	各 e_ℓ が	$e_{\ell}, e_{\ell'} \not \stackrel{\text{i.}}{\not} \ell \neq \ell' $ のとき
	1.12 3ヶ所	$a_{\ell_{i,\ell}}$	a_{ℓ_i}
p.30	18	適当な整数	適当な正の整数
1			有限
p.31	l.1	\sum	$ \sum$
		$\ell=0$	$\begin{array}{c c} & {\downarrow}_{=0} \\ \hline & V \Delta = \lambda \gamma - 1 \end{array}$
p.33	1.13	レニムスケート	
p.35	l.1	定義域と言い,	定義域, B を f の終域と言い,
p.35	l.1	像 (值域)	像
p.35	1.10	(d) f に対して、	(d) 写像 f に対して,
p.36	14	K-線型写像	K 線型写像
p.37	1.9	右を追加	例えば $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C},\mathbb{C}) \neq \operatorname{Hom}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$ となります.
p.38	1.14	実際, $v_1, v_2 \in V$ に対し	実際, $v_1, v_2 \in U$ に対し
p.39	17	$\frac{d}{dx}f(x) \in$	$\frac{d}{dx}f(x) := \frac{df}{dx}(x) := \frac{df(x)}{dx} \in$
p.41	16	$dx^{s(x)}$	$\frac{dx}{dx}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$
p.41 p.43	10	$[0,q)\subset\mathbb{R}$	$[0,a)\subset\mathbb{R},\ (a>0)$
p.45 p.45	1.9	 圧力と体積密度	
p.46	19	$A^* = A$ に	$A^* = A$ でかつ正 11 に
p.40	1.9	A - A C	$A = A \in \mathbb{N}^{-1}$ に $A \in \mathfrak{B}$ が正とは A のスペクトル(固有値)がすべて正
p.46	脚注		であることです. A のスペクトルに関しては $p.139$ を見よ.
p.40	//441		但し、 2) を「 2 ') $\rho(A^*A) \ge 0$ 」 することも可能です.
p.47	14	Principle	Principles
p.41 p.48	1.1	とする	et 5.
p.48	1.12	i(X') = X	$i: X' \to X$
p.48	l10	$f: U \to V$	線型写像 $f:U \to V$
p.49	1.40		\mathbb{R} ベクトル空間 \mathbb{R}^m
p.49	1.14	集合 A	集合 (有限集合)A
p.55	1.4	$V = \bigoplus Ke_i, W = \bigoplus Kb_j$	$V = \bigoplus_{i=1}^{n} Ke_i, W = \bigoplus_{j=1}^{m} Kb_j$
p.55	1.6	$V^* = \bigoplus Ke_i^*$	$V^* = \bigoplus_{i=1}^n Ke_i^*$
p.56	1.5	できません.	できませんが、適当な処理で(1)の両辺は同一視できます.
p.57	1.5	⊗が積が定義	⊗ が積として定義

頁	行	誤	正
p.60	110	$f,g \in \operatorname{Hom}_{\mathcal{B}}(A,B)$,	$f \in \operatorname{Hom}_{\mathcal{B}}(A, B), g \in \operatorname{Hom}_{\mathcal{B}}(B, C)$
p.63	1.7	$\{s_1,\cdots,s_6\}$ の各原子	$\{s_0,\cdots,s_5\}$ の各炭素原子
p.65	1.10	無矛盾です.	無矛盾です. しかし定理 4.7 を完全に理解する必要はありません. 内容は理解できなくても, このような定義により定まるという 事実を知ることは線形代数全体を知る上で重要なので、紹介しました. 圏論的な定義を行ってこの章を終えます.
p.66	1.8	例え,	たとえ、
p.67	12	K 線型空間	K 線型空間
p.69	1.5	12 章	10章
p.74	1.9	$a_{12}a_{23}a_{31}a_{21}a_{32}a_{13}$	$a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}$
p.77	14		またこの事実は群の制限として \mathfrak{S}_n の (i,k) を固定する 部分群 (部分集合で群であるもの) $\mathfrak{S}_n^{(i,k)}$ を用意すれば余 因子が表現でき $\epsilon(i,k)=(-1)^{i+k}$ となることから判ります.
p.91	1.8	$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n$	$\langle v, u \rangle = v_1 u_1 + \dots + v_n u_n$
p.92	l13	対して,	対して
p.93	1.9	通常	標準形では
p.97	1.3	$-\frac{d^2}{\pi} \frac{d}{dt^2} f$	$-\frac{d^2}{dt}$ f
	-	$\frac{dt^{2}}{\pi}$	$\frac{dx^{2J}}{\pi}$
p.101	1.6	α .	$\frac{-\frac{d}{dx^2}f}{\frac{\pi}{\alpha}} \frac{\tau \dot{\tau} \dot{\tau} \dot{\tau} \dot{\tau} \dot{\tau} \dot{\tau} \dot{\tau} $
p.103	13	$\mathcal{C}(S^1,\mathbb{R})$	$\mathcal{C}^0(S^1,\mathbb{R})$
p.104	1.4	エルミート	非退化条件を除いてエルミート
p.104	1.7	$\bigoplus_{i=1}^{n} \mathbb{R}x_i$	$\bigoplus_{i=1}^{n} \mathbb{R}x^{i}$
p.104	16	$\in U_n$	削除
p.105	1.6	m :=	m:
p.105	13	$\sum \bar{b}_n z^{-n}$	$\sum b_n z^{-n}$
p.111	17	$U(n,\mathbb{C})$	$\mathrm{U}(n)$
p.115	1.3	$\sigma_2 := \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}$	$\sigma_2 := \begin{pmatrix} 0 & -\sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$
p.116	1.3	$\mathfrak{so}(n) := \{ X \in \mathfrak{sl}(n, \mathbb{C}) $	$\mathfrak{so}(n) := \{ X \in \mathfrak{sl}(n, \mathbb{R}) \}$
p.116	1.12	\mathbb{E}_1	\mathbb{E}^1
p.117	l5	2 つの元に対する作用	2つの作用
p.127	1.10	$\delta_{i,j}$	δ_{ij}
p.129	13	$g_1 + g_2 + \cdots + g_r$	$\frac{1}{r}(g_1+g_2+\cdots+g_r)$
p.129	13	和を考えるとは群環	和や定数倍を考えるとは群環
p.130 p.131	l4 l7	環ですが, ℤ加群 環準同型	環です. ℤ 加群 環準同型写像
p.131 p.132	17	$\mathcal{C}[\mathfrak{C}_3]e_i$	環辛同至予隊 $\mathbb{C}[\mathfrak{C}_3]e_i$
p.132 p.132	l6	$f := f_0 1 + f_1 t_3 + f_2 t_3^2$	$f := (f_0 1 + f_1 t_3 + f_2 t_3^2)$
p.132	l5	$f \in \mathbb{C}[\mathfrak{C}_3]$ の元に	$\vec{\pi}_f \in \mathbb{C}[\mathfrak{C}_3] \ \mathcal{C}$
p.135	1.4	ℝ表現	R 上の表現
p.136	112	$\hat{f}_j := f e_{12,j}$	$\hat{f}_j e_{12,j} := f e_{12,j}$
p.136	l11	$\frac{f_{i}\zeta_{12}^{ij}}{f_{i}\zeta_{12}^{ij}}$	$f_i\zeta_{12}^{-ij}$
p.137	1.1	$\int_{12}^{112} \int_{12}^{12} \int_{12}^{12}$	$\int_{12}^{3} \frac{1}{12} \frac{1}{12} \int_{12}^{-i} \frac{1}{12} \frac{1}{12} \int_{12}^{-i} \frac{1}{12} \frac{1}{12} \frac{1}{12} \int_{12}^{-i} \frac{1}{12} \frac{1}{12}$
p.137	1.2	$ \left[\zeta_{12}^{i_4j_3} \left(\zeta_{12}^{i_12j_{12}} \sum_{i_3=0}^{2} f_{i_43+i_3} \zeta_4^{i_3j_3}\right)\right] \zeta_4^{i_4j_4} $	$\left[\zeta_{12}^{i_4j_3} \left(\zeta_{12}^{-i_{12}j_{12}} \sum_{i_3=0}^2 f_{i_43+i_3} \zeta_3^{-i_3j_3}\right)\right] \zeta_4^{-i_4j_4}$
p.137	12	$\frac{(3+4)\hat{1}2}{12^2}$ $\frac{\hat{g}_i t_n^i}{t^{\ell_1 \ell_2}}$	$\frac{(3+4)11}{12\cdot 11}$
p.141	1.6	$\hat{g}_i t_n^i$	$g_i t_n^i$
p.141	1	C	$t^{\ell_1+\ell_2}$
p.145	l.11	n 次元直交変換	n 次元直交変換群

頁	行	誤	正
p.146	1.6	SO(2)	O(2)
p.146	1.7	+u	+u+Q
p.146	19	着目したのが K	着目したのが A_K^n
p.147	1.9	重要となります.	重要となります. $P\mathbb{C}^n$ は $\mathbb{C}P^n$, \mathbb{P}^n とも書きます. \mathbb{R} も同様です.
p.149	1.1	$\begin{pmatrix} 1 & 0 \\ u & a \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ u & A \end{pmatrix}$
p.149	1.1	$\widehat{\mathrm{GL}}(n,k)$	$\widehat{\mathrm{GL}}(n,K)$
p.150	1.2	(T:X:Y:Z)	[T:X:Y:Z]
p.151	1.10	$\pi(L_a)$	$\pi(P)$
p.151	l.13	消滅点	消失点 (消滅点)
p.152	16	S_a^\prime に対して	S_a' について
p.153	18	直交した直線	(X_0,X_1) に直交した直線
p.153	16	\mathbb{R}^2 の直線の埋め込み	\mathbb{R}^2 への直線の埋め込み
p.155	1.6	以降天空	の時代,天空
p.155	1.11	\mathbb{R}^4 であると	R ⁴ で記述
p.155	17	との位置を P	の位置を P
p.155	17	PO の相対位置を	相対位置 PO を
p.155	16	c は光速度です.	c は光速です.
p.156	1.10	並進群も含めた	並進も含めた
p.156	18	通常は例えば,	理論物理では,
p.158	1.12	$\sum_{i=1}^{n}$	$\sum_{i=1}^{m}$
p.159	1.5	$\sum_{j_1,,j_r}$	$\sum_{j_1 < \dots < j_r}$
p.159	1.5	$e_1 A_{ij} e_{m+j}$	$e_i \wedge A_{ij} e_{m+j}$
10 章		図 10-4,5,6,7,8,9	☑ 10-3,4,5,6,7,8
	問題 10.1	図 10-4 の (a)	図 10-4 の左図
p.164	1.2	$\begin{pmatrix} a & b \\ c & s \end{pmatrix}$	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
p.165	15	$\psi \Leftrightarrow \psi'$	$\psi \succeq \psi'$
p.166	1.2	$\frac{\gamma}{\partial_z \gamma}$	$\frac{\gamma}{\sqrt{\partial_z \gamma}}$
p.167	1.2	$\left \left(\frac{1}{2}k \right)^2 - \sqrt{-1} \frac{\partial_s k}{2} \right $	$\left \left(\frac{1}{2}k \right)^2 + \sqrt{-1} \frac{\partial_s k}{2} \right $
p.168	1.6	$\partial_s^3 \psi_{t2} = \partial_s(u\psi_{t2})$	$\partial_s^3 \psi_{t2} = -\partial_s(u\psi_{t2})$
p.168	1.8-1.10 7ヶ所	∂_z	∂_s
p.168	14	形状である	形状をもつ
p.171	1.10	可積分条件と理解できます.	削除
p.171	1.15	定まります.	定まります. つまり, 非線型性が線型空間により決定されるのです.
p.172	1.4	x_{n-1} \mathcal{C}	$x_{n-1} \stackrel{\tilde{\lambda}^{\xi}}{\sim}$
p.172	1.4	$x_n = c + \varepsilon$	$x_n = c + \varepsilon \ (\varepsilon \neq 0)$
p.174	l1	1Km 単位	1km 単位
p.175	1.13	1Km や数 m として	1km や数 m を
p.182	1.12	カリキュラス	カルキュラス
p.195	1.7	$\mathrm{Mat}_{\mathbb{C}}(r,\mathbb{C})$	$\operatorname{Mat}_{\mathbb{C}}(r)$
p.197	1.4	互いに直交	$\lambda_i \neq \lambda_j$ のとき互いに直交
p.199	1.4	Z を選び	ℤを選び

頁	行	誤	正
207	1.0	d _K	$\frac{d}{dx}:\mathcal{K}$ $\mathcal{C}^{\infty}(S^1,\mathbb{R})^*$
p.207	1.2	$\frac{d}{dx}\mathcal{K}$ $\mathcal{C}^{\infty}(S^2,\mathbb{R})^*$	$\frac{1}{dx}$: \mathcal{K}
p.207	110	$\mathcal{C}^{\infty}(S^2,\mathbb{R})^*$	$\mathcal{C}^{\infty}(S^1,\mathbb{R})^*$
p.208	1.9	定義 8.7	定義 8.3
p.210	1.12	加群の件	加群の圏
p.210	16	$e^{\sqrt{-1}a}$ となること	$e^{\sqrt{-1}an}$ となること
p.210	13	$e^{\frac{t}{c}\frac{\partial}{\partial x}}h(x) + e^{-\frac{t}{c}\frac{\partial}{\partial x}}g(x)$	$e^{ct\frac{\partial}{\partial x}}h(x) + e^{-ct\frac{\partial}{\partial x}}g(x)$
p.213	1.7	$\operatorname{End}_{\mathbb{C}}(\mathcal{C}^{\omega}((\mathbb{R}^3)^{\times},\mathbb{C})$	$\operatorname{End}_{\mathbb{C}}(\mathcal{C}^{\omega}(\mathbb{R}^3)^{\times})$
p.213	1.8	$\operatorname{End}_{\mathbb{C}}(\mathfrak{so}(3),\mathfrak{so}(3))$	$\operatorname{End}_{\mathbb{C}}(\mathfrak{so}(3))$
p.213	l.11	$\sum_k L_k$	$\sum_{k} f_{ijk} L_k$
p.213	l5	$d\xi^i$	$d\xi_i$
p.221	1.1	環準同型	単射かつ環準同型
p.221	19	$v \ge t $	v_{ρ} となる v_{ρ}
p.221	l1	なす	なす.
p.223	l10	反動形水力	反動型水力
p.226	17	$\iota: (-1,1) \to \mathcal{M}$	$\iota: (-1,1) \to U \subset \mathcal{M}$
p.230	1.9	∂_{x_i}	∂_{x^i}
p.233	1.2	$\mathcal{M} = \bigcup_i S_j^{(n)}$	$\mathcal{M} = \bigcup_{i} S_{i}^{(n)}$
p.233	1.2	$S_i^{(n)} \cap S_j^{(n)} \not$ \mathcal{T}^{\sharp}	$S_i^{(n)} \cap S_j^{(n)}, \ (i \neq j) \ \mathcal{P}^{\zeta}$
p.235	l1	$\overset{\cdot}{\mathbb{Z}}$ が小変化 dS は完全形式	微小変化は完全形式 dS
p.238	l1	$A_i \stackrel{\star}{\sim} \mathrm{U} \ (1)$	A を U(1)
p.241	1.9	自由エネルギー <i>F</i>	自由エネルギーチ
p.251	17	最低限 n 回	最大 n 回
p.253	l.1	等十分大きな値	等,大きな値
p.262	l3	(i-k)	(i-k)!
p.263	1.6	$\mathbb{C}[x,\xi]$	$\mathbb{R}[x,\xi]$
p.265	1.9	Isam	Isham
p.275	1.10	arepsilon は零を許さない	q-p =0 は許さない
p.275	17	:=	=
p.278	l10	$\mathcal{B}_{\mathcal{T}_{X_0},X_0} = \wp(X) =$	$\mathcal{B}_{\mathcal{T}_{X_0},X_0} =$
p.280	1.10	測度零集合	測度零集合族
p.280	1.15	μ の値をゼロにする	μ の値を適切に定める
p.281	1.1	g(x)	f(x)
p.283	13	$f,g\in\mathcal{F}$	$f,g\in\mathcal{F}_U$
p.286		0X	0x
p.287	1.2	$2 \stackrel{\frown}{\pi} X$,	$2 \stackrel{\frown}{\pi} x$,
p.291	l13	$f := \frac{1}{(1+c^2)^2 (f(i))} \frac{1}{2}$	f:
p.291	112	$\frac{(\tanh(f(i)) - 1)/2}{$ 固体数	$\frac{(\tanh(f(i))+1)/2}{\prod f + \Re f}$
p.293	1.2		個体数
p.294	1.5	$\exp(\sqrt{-1}\ell(x_0))$	$\exp(\sqrt{-1}\ell x_0)$
p.296	12		α
p.298	12	$\left(\sum_{j} a^{(i,j)} b_i\right)$	$\left(\sum_{j} a^{(j,i)} b_{j}\right)$
		\sqrt{j}	\sqrt{j}
p.300	15	$\frac{1}{2\pi} \int_{0}^{2\pi} f(\theta)g(\theta)d\theta$	$\frac{1}{2\pi} \int_0^{2\pi} m(f(\theta))g(\theta)d\theta$
		$\frac{1}{2\pi} \int_0^{\pi} \int (v)g(v)uv$	$\frac{1}{2\pi}\int_0^{\pi} m(f(\theta))g(\theta)d\theta$
p.301	1.2	$\sum_{i} (u_{i+} + v_i + u_{i-}v_{i-} + \sqrt{-1}(u_{i-}v_{i+} - u_{i+}v_{i-}))$	$\sum_{i} (u_{i+}v_{i+} + u_{i-}v_{i-} + \sqrt{-1}(u_{i+}v_{i-} - u_{i-}v_{i+}))$
p.304	14	$\sum A_{mk_1} \cdots A_{mk_n} \varepsilon_{k_1, \cdots, k_m}$	$\sum A_{1k_1} \cdots A_{mk_m} \varepsilon_{k_1, \cdots, k_m}$
₅₀ 911	1 10		k_1, \cdots, k_m
p.311	1.13	一	今野紀雄教授 井手勇介氏
p.311 p.311	l.13 l8	开西男介氏 児玉祐二教授	开于男介氏 児玉祐治教授
p.311 p.313	立 l8 左 l5	$\operatorname{Mat}_K(n,m)$ 37	発表性に対象な $\operatorname{Mat}_K(n,m)$ 38
р.этэ	∠L. 10	11400K (10, 110) 01	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.